Exploiting Supramolecular Dynamics in Metal–Phenolic Networks to Generate Metal–Oxide and Metal–Carbon Networks
نویسندگان
چکیده
Supramolecular complexation is a powerful strategy for engineering materials in bulk and at interfaces. Metal–phenolic networks (MPNs), which are assembled through supramolecular complexes, have emerged as suitable candidates surface particle owing to their diverse properties. Herein, we examine the dynamics of MPNs during thermal transformation processes. Changes local network including enlarged pores, ordered aromatic packing, metal relocation arise from treatment air or an inert atmosphere, enabling metal–oxide (MONs) metal–carbon networks, respectively. Furthermore, by integrating photo-responsive motifs (i.e., TiO2) silanization, MONs endowed with reversible superhydrophobic (>150°) superhydrophilic (?0°) By highlighting thermodynamics into materials, this work offers versatile pathway advanced engineering.
منابع مشابه
Exploiting Semantic Networks to Generate Hypermedia
Hypermedia is a hot research topic nowadays with a wide application domain In this paper we study the problem of generating hypermedia presentations from semantic network based repositories After discussing the application domain of this approach we focus on issues concerning the mapping of semantic networks to hypermedia structures In addition we present brie y our experiences from implementin...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Learning to Generate Networks
We investigate the problem of learning to generate complex networks from data. Specifically, we consider whether deep belief networks, dependency networks, and members of the exponential random graph family can learn to generate networks whose complex behavior is consistent with a set of input examples. We find that the deep model is able to capture the complex behavior of small networks, but t...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملDiscovering link communities in complex networks by exploiting link dynamics
Discovery of communities in complex networks is a fundamental data analysis problem with applications in various domains. Most of the existing approaches have focused on discovering communities of nodes, while recent studies have shown great advantages and utilities of the knowledge of communities of links in networks. From this new perspective, we propose a link dynamics based algorithm, calle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Angewandte Chemie
سال: 2021
ISSN: ['1521-3773', '1433-7851', '0570-0833']
DOI: https://doi.org/10.1002/anie.202103044